Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Neuroimaging

Newborn neurons in adults may protect against cognitive decline

by Aswathy Ammothumkandy, Charles Liu, and Michael A. Bonaguidi
January 29, 2025
in Neuroimaging
Newborn neuron (green and purple) in brain tissue from human epilepsy patients. (Aswathy Ammothumkandy/Bonaguidi Lab/USC Stem Cell)

Newborn neuron (green and purple) in brain tissue from human epilepsy patients. (Aswathy Ammothumkandy/Bonaguidi Lab/USC Stem Cell)

Share on TwitterShare on Facebook

Your brain can still make new neurons when you’re an adult. But how does the rare birth of these new neurons contribute to cognitive function?

Neurons are the cells that govern brain function, and you are born with most of the neurons you will ever have during your lifetime. While the brain undergoes most of its development during early life, specific regions of the brain continue to generate new neurons throughout adulthood, although at a much lower rate. Whether this process of neurogenesis actually happens in adults and what function it serves in the brain is still a subject of debate among scientists.

Past research has shown that people with epilepsy or Alzheimer’s disease and other dementias develop fewer neurons as adults than people without these conditions. However, whether the absence of new neurons contributes to the cognitive challenges patients with these neurological disorders face is unknown.

We are part of a team of stem cell researchers, neuroscientists, neurologists, neurosurgeons and neuropsychologists. Our newly published research reveals that the new neurons that form in adults’ brains are linked to how you learn from listening to other people.

New neurons and learning

Researchers know that new neurons contribute to memory and learning in mice. But in humans, the technical challenges of identifying and analyzing new neurons in adult brains, combined with their rarity, had led scientists to doubt their significance to brain function.

To uncover the relationship between neurogenesis in adults and cognitive function, we studied patients with drug-resistant epilepsy. These patients underwent cognitive assessments prior to and donated brain tissue during surgical procedures to treat their seizures. To see whether how many new neurons a patient had was associated with specific cognitive functions, we looked under the microscope for markers of neurogenesis.

We found that new neurons in the adult brain are linked to reduced cognitive decline – particularly in verbal learning, or learning by listening to others.

This was very surprising to us. In mice, new neurons are known for their role in helping them learn and navigate new spaces through visual exploration. However, we did not observe a similar connection between new neurons and spatial learning in people.

Improving cognition

Talking with others and remembering those conversations is an integral part of day-to-day life for many people. However, this crucial cognitive function declines with age, and the effects are more severe with neurological disorders. As aging populations grow, the burden of cognitive decline on health care systems worldwide will increase.

Our research suggests that the link between newborn neurons and verbal learning may be foundational to developing treatments to restore cognition in people. Enhancing new neuron generation could be a potential strategy to improve brain health and restore cognition in aging and in people with epilepsy or dementia. But for now, these ideas are just goals and any future treatments are a long way off.

Importantly, our finding that new neurons function differently in mice and in humans emphasizes the critical need to study biological functions like neurogenesis in people whenever possible. This will ensure that research conducted in animal models, such as mice, is relevant to people and can translate to the clinic.

Current drugs for epilepsy primarily aim to reduce seizures, with limited focus on addressing the cognitive decline patients experience. To enhance cognitive outcomes for patients, we started a clinical trial focusing on boosting new neuron production and cognition in epilepsy patients through aerobic exercise. We are currently in the early Phase 1 of the clinical trial, which seeks to establish the safety of the study. Thus far, two patients have successfully and safely finished the study. We plan to recruit eight more patients to exercise and complete this phase.

By bringing together basic science in the lab and clinical research in people, a better understanding of brain regeneration could help support brain health throughout the lifespan.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Psychotic delusions are evolving to incorporate smartphones and social media algorithms
Memory

This common snack enhanced memory and brain vascular function in a 16-week trial

November 30, 2025
Illuminated blue human brain with neural pathways, representing neuroscience and psychological research in mental health and cognitive function.
Cognitive Science

How the brain transforms continuous sound into distinct words

November 28, 2025
Stanford scientist discovers that AI has developed an uncanny human-like ability
Artificial Intelligence

Artificial intelligence helps decode the neuroscience of dance

November 28, 2025
Early accumulation of tau in the brain associated with a rapid decline of episodic memory in Alzheimer’s disease
Alzheimer's Disease

A common amino acid reduces brain plaques in animal models of Alzheimer’s disease

November 27, 2025
Mystical beliefs predict a meaningful life even without organized religion
Developmental Psychology

Researchers identify a potential neural pathway from childhood trauma to feelings of powerlessness

November 26, 2025
Authoritarianism in parents may hinder a key cognitive skill in their children
ADHD

Brain structure changes may partially explain the link between screen time and ADHD

November 26, 2025
Ayahuasca accelerates fear extinction via its effect on serotonin receptors
Depression

Inflammation in a key dopamine hub correlates with depression severity

November 25, 2025
Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use
Neuroimaging

Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use

November 25, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Psychedelics may enhance emotional closeness and relationship satisfaction when used therapeutically

An “AI” label fails to trigger negative bias in new pop music study

Learning via ChatGPT leads to shallower knowledge than using Google search, study finds

Participating in activist groups linked to increased narcissism and psychopathy over time

Rare mutations in three genes may disrupt neuron communication to cause ADHD

This common snack enhanced memory and brain vascular function in a 16-week trial

Psychotic delusions are evolving to incorporate smartphones and social media algorithms

A high-fat diet severs the chemical link between gut and brain

RSS Psychology of Selling

  • Brain wiring predicts preference for emotional versus logical persuasion
  • What science reveals about the Black Friday shopping frenzy
  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy