Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Our brain prefers positive vocal sounds that come from our left

by Mischa Dijkstra
May 28, 2023
in Cognitive Science, Neuroimaging
Share on TwitterShare on Facebook

Researchers have shown that the brain’s primary auditory cortex is more responsive to human vocalizations associated with positive emotions and coming from our left side than to any other kind of sounds. This bias can be explained by the way our brain is organized, but its evolutionary significance is not yet known.

Sounds that we hear around us are defined physically by their frequency and amplitude. But for us, sounds have a meaning beyond those parameters: we may perceive them as pleasant or unpleasant, ominous or reassuring, and interesting and rich in information, or just noise.


Read original paper

Download original paper (pdf)


One aspect that affects the emotional ‘valence’ of sounds – that is, whether we perceive them as positive, neutral, or negative – is where they come from. Most people rate looming sounds, which move towards us, as more unpleasant, potent, arousing, and intense than receding sounds, and especially if they come from behind rather than from the front. This bias might give a plausible evolutionary advantage: to our ancestors on the African savannah, a sound approaching from behind their vulnerable back might have signaled a predator stalking them.

Now, neuroscientists from Switzerland have shown another effect of direction on emotional valence: we respond more strongly to positive human sounds, like laughter or pleasant vocalizations, when these come from the left. The results are published in Frontiers in Neuroscience.

“Here we show that human vocalizations that elicit positive emotional experiences, yield strong activity in the brain’s auditory cortex when they come from the listener’s left side. This does not occur when positive vocalizations come from the front or right,” said first author Dr Sandra da Costa, a research staff scientist at the EPFL in Lausanne, Switzerland.

“We also show that vocalizations with neutral or negative emotional valence, for example meaningless vowels or frightened screams, and sounds other than human vocalizations do not have this association with the left side.”

From erotic vocalizations to a ticking bomb

Da Costa and colleagues used functional magnetic resonance imaging (fMRI) to compare how strongly the brain of 13 volunteers responded to sounds coming from the left, front, or right. These were women and men in their mid-twenties, all right-handed, and none were trained in music. The researchers compared the brain’s response between six categories of sounds: besides positive human vocalizations like erotic sounds, they played back neutral and negative vocalizations, like meaningless vowels and a frightened scream; and positive, neutral, and negative non-vocalizations, like applause, wind, and a ticking bomb.

Da Costa et al. focused on regions known to be important for the early stages of sound processing: the primary auditory areas A1 and R, the surrounding other early-stage auditory areas and the ‘voice area’ (VA). Each occurs in the left and right hemisphere.

The results showed that A1 and R in both hemispheres became maximally active when listening to positive vocalizations coming from the left, and much less when listening to positive vocalizations coming from the front or right, to neutral or negative vocalizations, or to non-vocalizations.

Auditory cortex discriminates in favor of positive vocalizations from left

“The strong activation by vocalizations with positive emotional valence coming from the left takes place in the primary auditory cortex of either hemisphere: the first areas in the brain cortex to receive auditory information. Our findings suggest that the nature of a sound, its emotional valence, and its spatial origin are first identified and processed there,” said co-author Dr Tiffany Grisendi.

In addition, area L3 in the right hemisphere, but not its twin in the left hemisphere, also responded more strongly to positive vocalizations coming from the left or right compared to those coming from the front. In contrast, the spatial origin of the sound didn’t impact the response to non-vocalizations.

Unclear evolutionary significance

The evolutionary significance of our brain’s bias in favor of positive vocalizations coming from the left is still unclear.

Senior author Prof Stephanie Clarke, at the Neuropsychology and Neurorehabilitation Clinic at the Lausanne University Hospital said: “It is currently unknown when the preference of the primary auditory cortex for positive human vocalizations from the left appears during human development, and whether this is a uniquely human characteristic. Once we understand this, we may speculate whether it is linked to hand preference or the asymmetric arrangements of the internal organs.”

RELATED

Alcohol use disorder may exacerbate Alzheimer’s disease through shared genetic pathways
Memory

Random signals in support cells help cement long-term memories

January 10, 2026
Brain circuits tied to depression’s “negativity effect” uncovered
Alzheimer's Disease

Sex differences in Alzheimer’s linked to protein that blocks brain cell growth

January 10, 2026
Neuroimaging study finds gray matter reductions in first-time fathers
Neuroimaging

Common pesticide damages brain cell recycling system and increases Parkinson’s risk

January 9, 2026
Conservatives and liberals tend to engage in different evidence-gathering strategies
Cognitive Science

Conservatives and liberals tend to engage in different evidence-gathering strategies

January 9, 2026
Futuristic low-poly illustration of a human brain with vibrant lighting and geometric background.
Business

Can entrepreneurship be taught? Here’s the neuroscience

January 8, 2026
Scientists shed light on molecular switch that protects brain against Parkinson’s disease
Mental Health

Restoring cellular energy transfer heals nerve damage in mice

January 8, 2026
This specialized cognitive training triggers neurobiological changes and lowers cortisol
Anxiety

This specialized cognitive training triggers neurobiological changes and lowers cortisol

January 8, 2026
Scientists find eating refined foods for just three days can impair memory in the aging brain
Cognitive Science

Scientists find eating refined foods for just three days can impair memory in the aging brain

January 8, 2026

PsyPost Merch

STAY CONNECTED

LATEST

Blue-blocking glasses fail to alleviate mania

Intranasal 5-MeO-DMT effects peak within 15 minutes and lack strong visuals, study finds

Does ASMR really help with anxiety? A psychology expert explains the evidence

Random signals in support cells help cement long-term memories

Sex differences in Alzheimer’s linked to protein that blocks brain cell growth

Extreme heat exposure is linked to higher prevalence of depression and anxiety

Study links men’s higher intelligence to fewer abusive relationship behaviors

Fruits and vegetables preserve cognition in mice fed a Western-style diet

RSS Psychology of Selling

  • Researchers track how online shopping is related to stress
  • New study reveals why some powerful leaders admit mistakes while others double down
  • Study reveals the cycle of guilt and sadness that follows a FOMO impulse buy
  • Why good looks aren’t enough for virtual influencers
  • Eye-tracking data shows how nostalgic stories unlock brand memory
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy