Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Artificial Intelligence

Scholars: AI isn’t “hallucinating” — it’s bullshitting

by Eric W. Dolan
June 9, 2024
in Artificial Intelligence
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook
Follow PsyPost on Google News

Large language models, such as OpenAI’s ChatGPT, have revolutionized the way artificial intelligence interacts with humans, producing text that often seems indistinguishable from human writing. Despite their impressive capabilities, these models are known for generating persistent inaccuracies, often referred to as “AI hallucinations.” However, in a paper published in Ethics and Information Technology, scholars Michael Townsen Hicks, James Humphries, and Joe Slater from the University of Glasgow argue that these inaccuracies are better understood as “bullshit.”

Large language models (LLMs) are sophisticated computer programs designed to generate human-like text. They achieve this by analyzing vast amounts of written material and using statistical techniques to predict the likelihood of a particular word appearing next in a sequence. This process enables them to produce coherent and contextually appropriate responses to a wide range of prompts.

Unlike human brains, which have a variety of goals and behaviors, LLMs have a singular objective: to generate text that closely resembles human language. This means their primary function is to replicate the patterns and structures of human speech and writing, not to understand or convey factual information.

The term “AI hallucination” is used to describe instances when an LLM like ChatGPT produces inaccurate or entirely fabricated information. This term suggests that the AI is experiencing a perceptual error, akin to a human seeing something that isn’t there. However, this metaphor is misleading, according to Hicks and his colleagues, because it implies that the AI has a perspective or an intent to perceive and convey truth, which it does not.

To better understand why these inaccuracies might be better described as bullshit, it is helpful to look at the concept of bullshit as defined by philosopher Harry Frankfurt. In his seminal work, Frankfurt distinguishes bullshit from lying. A liar, according to Frankfurt, knows the truth but deliberately chooses to say something false. In contrast, a bullshitter is indifferent to the truth. The bullshitter’s primary concern is not whether what they are saying is true or false but whether it serves their purpose, often to impress or persuade.

Frankfurt’s concept highlights that bullshit is characterized by a disregard for the truth. The bullshitter does not care about the accuracy of their statements, only that they appear convincing or fit a particular narrative.

The scholars argue that the output of LLMs like ChatGPT fits Frankfurt’s definition of bullshit better than the concept of hallucination. These models do not have an understanding of truth or falsity; they generate text based on patterns in the data they have been trained on, without any intrinsic concern for accuracy. This makes them akin to bullshitters — they produce statements that can sound plausible without any grounding in factual reality.

The distinction is significant because it influences how we understand and address the inaccuracies produced by these models. If we think of these inaccuracies as hallucinations, we might believe that the AI is trying and failing to convey truthful information.

But AI models like ChatGPT do not have beliefs, intentions, or understanding, Hicks and his colleagues explained. They operate purely on statistical patterns derived from their training data.

When they produce incorrect information, it is not due to a deliberate intent to deceive (as in lying) or a faulty perception (as in hallucinating). Rather, it is because they are designed to create text that looks and sounds right without any intrinsic mechanism for ensuring factual accuracy.

“Investors, policymakers, and members of the general public make decisions on how to treat these machines and how to react to them based not on a deep technical understanding of how they work, but on the often metaphorical way in which their abilities and function are communicated,” Hicks and his colleagues concluded. “Calling their mistakes ‘hallucinations’ isn’t harmless: it lends itself to the confusion that the machines are in some way misperceiving but are nonetheless trying to convey something that they believe or have perceived.”

“This, as we’ve argued, is the wrong metaphor. The machines are not trying to communicate something they believe or perceive. Their inaccuracy is not due to misperception or hallucination. As we have pointed out, they are not trying to convey information at all. They are bullshitting.”

“Calling chatbot inaccuracies ‘hallucinations’ feeds in to overblown hype about their abilities among technology cheerleaders, and could lead to unnecessary consternation among the general public. It also suggests solutions to the inaccuracy problems which might not work, and could lead to misguided efforts at AI alignment amongst specialists,” the scholars wrote.

“It can also lead to the wrong attitude towards the machine when it gets things right: the inaccuracies show that it is bullshitting, even when it’s right. Calling these inaccuracies ‘bullshit’ rather than ‘hallucinations’ isn’t just more accurate (as we’ve argued); it’s good science and technology communication in an area that sorely needs it.”

OpenAI, for its part, has said that improving the factual accuracy of ChatGPT is a key goal.

“Improving factual accuracy is a significant focus for OpenAI and many other AI developers, and we’re making progress,” the company wrote in a 2023 blog post. “By leveraging user feedback on ChatGPT outputs that were flagged as incorrect as a main source of data—we have improved the factual accuracy of GPT-4. GPT-4 is 40% more likely to produce factual content than GPT-3.5.”

“When users sign up to use the tool, we strive to be as transparent as possible that ChatGPT may not always be accurate. However, we recognize that there is much more work to do to further reduce the likelihood of hallucinations and to educate the public on the current limitations of these AI tools.”

The paper, “ChatGPT is bullshit,” was published June 8, 2024.

TweetSendScanShareSendPin1ShareShareShareShareShare

RELATED

Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails
Readers struggle to understand AI’s role in news writing, study suggests
Artificial Intelligence

Readers struggle to understand AI’s role in news writing, study suggests

June 29, 2025

A new study finds that readers often misunderstand AI’s role in news writing, creating their own explanations based on limited information. Without clear byline disclosures, many assume the worst.

Read moreDetails
Generative AI chatbots like ChatGPT can act as an “emotional sanctuary” for mental health
Artificial Intelligence

Do AI tools undermine our sense of creativity? New study says yes

June 19, 2025

A new study published in The Journal of Creative Behavior offers insight into how people think about their own creativity when working with artificial intelligence.

Read moreDetails
Dark personality traits and specific humor styles are linked to online trolling, study finds
Artificial Intelligence

Memes can serve as strong indicators of coming mass violence

June 15, 2025

A new study finds that surges in visual propaganda—like memes and doctored images—often precede political violence. By combining AI with expert analysis, researchers tracked manipulated content leading up to Russia’s invasion of Ukraine, revealing early warning signs of instability.

Read moreDetails
Teen depression tied to balance of adaptive and maladaptive emotional strategies, study finds
Artificial Intelligence

Sleep problems top list of predictors for teen mental illness, AI-powered study finds

June 15, 2025

A new study using data from over 11,000 adolescents found that sleep disturbances were the most powerful predictor of future mental health problems—more so than trauma or family history. AI models based on questionnaires outperformed those using brain scans.

Read moreDetails
New research links certain types of narcissism to anti-immigrant attitudes
Artificial Intelligence

Fears about AI push workers to embrace creativity over coding, new research suggests

June 13, 2025

A new study shows that when workers feel threatened by artificial intelligence, they tend to highlight creativity—rather than technical or social skills—in job applications and education choices. The research suggests people see creativity as a uniquely human skill machines can’t replace.

Read moreDetails
Smash or pass? AI could soon predict your date’s interest via physiological cues
Artificial Intelligence

A neuroscientist explains why it’s impossible for AI to “understand” language

June 12, 2025

Can artificial intelligence truly “understand” language the way humans do? A neuroscientist challenges this popular belief, arguing that machines may generate convincing text—but they lack the emotional, contextual, and biological grounding that gives real meaning to human communication.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT mimics human cognitive dissonance in psychological experiments, study finds

June 3, 2025

OpenAI’s GPT-4o demonstrated behavior resembling cognitive dissonance in a psychological experiment. After writing essays about Vladimir Putin, the AI changed its evaluations—especially when it thought it had freely chosen which argument to make, echoing patterns seen in people.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Could creatine slow cognitive decline? Mouse study reveals promising effects on brain aging

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

Frequent dreams and nightmares surged worldwide during the COVID-19 pandemic

Vagus nerve signals influence food intake more in higher socio-economic groups

People who think “everyone agrees with me” are more likely to support populism

What is the most attractive body fat percentage for men? New research offers an answer

Longer antidepressant use linked to more severe, long-lasting withdrawal symptoms, study finds

New psychology study sheds light on mysterious “feelings of presence” during isolation

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy