Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Scientists develop computer model explaining how brain learns to categorize

by New York University
March 11, 2015
in Cognitive Science
Photo credit: Katya Kadyshevskaya of Scripps Research Institute

Photo credit: Katya Kadyshevskaya of Scripps Research Institute

Share on TwitterShare on Facebook

New York University researchers have devised a computer model to explain how a neural circuit learns to classify sensory stimuli into discrete categories, such as “car vs. motorcycle.” Their findings, which appear in the journal Nature Communications, shed new light on the brain processes underpinning judgments we make on a daily basis.

“Categorization is vital for survival, such as distinguishing food from inedible things, as well as for formation of concepts, for instance ‘dog vs. cat,’ and relationship between concepts, such as hierarchical classification of animals,” says author Xiao-Jing Wang, Global Professor of Neural Science, Physics, and Mathematics at NYU and NYU Shanghai. “Our proposed model can only explain category learning of simple visual stimuli. Future research is needed to explore if the general principles extracted from this model are applicable to more complex categorizations.”

Wang conducted the study with Tatiana Engel, a postdoctoral associate at the time of the study, and Jah Chaisangmongkon, a doctoral candidate in his group, in collaboration with experimentalist David Freedman, a neurobiologist at the University of Chicago. Freedman had previously developed a behavioral paradigm for investigating electrical activity of single-neurons that are correlated with category memberships of visual stimuli.

In this neural-circuit model, which incorporates what we know about the organization and neurophysiology of the cortex, lower-level neural circuits send information about visual stimuli to a higher-level neural circuit where an analog stimulus feature (like the direction of a random pattern of moving dots) is classified into binary categories (A or B). The researchers’ results showed that the model captured a wide range of experimental observations and yielded specific predictions that were confirmed by an analysis of single-neuron electrical activity recorded in a category-learning experiment.

Interestingly, the researchers found that learning a correct category boundary (dividing the continuous feature into A and B) requires top-down feedback projection from category-selective neurons to feature-coding neurons.

Since the pioneering work by NYU’s J. Anthony Movshon, Stanford’s William Newsome, and others, it has been well known that feature-coding sensory neurons reflect an animal’s choice about categorical membership (A or B) of a stimulus in a probabilistic way (quantified as “choice probability”). The common belief was that this is because a category choice is influenced by stochastic, or random, activity of sensory neurons through bottom-up, sensory-to-category pathways.

The new model, reported in the Nature Communications article, suggests a novel interpretation, namely that such “choice probability” results from category-to-sensory, top-down signaling.

This finding offers new insights into feedback projections in the brain whose functional significance had previously been a long-standing puzzle, the researchers note.

Google News Preferences Add PsyPost to your preferred sources
Previous Post

Boredom and frustration trigger skin-picking and other compulsive behaviors

Next Post

New take on game theory offers clues on why we cooperate

RELATED

Childhood neglect is linked to troubling health outcomes, but two factors can dramatically change this trajectory, study suggests
Cognitive Science

Childhood trauma is linked to lower cognitive flexibility in young adults

February 22, 2026
People who engage in impulsive violence tend to have lower IQ scores
Cognitive Science

People who engage in impulsive violence tend to have lower IQ scores

February 21, 2026
MCT oil may boost brain power in young adults, study suggests
Cognitive Science

MCT oil may boost brain power in young adults, study suggests

February 20, 2026
Expressive suppression can effectively reduce negative emotions under specific conditions
Memory

New psychology research reveals how repetitive thinking primes involuntary memories

February 19, 2026
What was Albert Einstein’s IQ?
Cognitive Science

What was Albert Einstein’s IQ?

February 19, 2026
Genetic factors likely confound the link between c-sections and offspring mental health
Cognitive Science

Neuroscientists identify a unique feature in the brain’s wiring that predicts sudden epiphanies

February 19, 2026
Psychologists developed a 20-minute tool to help people reframe their depression as a source of strength
Cognitive Science

High IQ men tend to be less conservative than their average peers, study finds

February 18, 2026
Concept cells and pronouns: Neuroscientists shed light on key aspect of language comprehension
Memory

Scientists have found a fascinating link between breathing and memory

February 17, 2026

STAY CONNECTED

LATEST

Childhood trauma is linked to lower cognitive flexibility in young adults

Shingles vaccine linked to slower biological aging, but brain markers show no change

The presence of robot eyes affects perception of mind

Psychological capital mitigates the impact of interpersonal sensitivity on anxiety in future nurses

Men and women tend to read sexual assault victims’ emotions differently, study finds

Researchers discovered a surprising link between ignored hostility and crime

A popular weight loss drug shows promise for treating alcohol addiction

How unemployment changes the way people dream

PsyPost is a psychology and neuroscience news website dedicated to reporting the latest research on human behavior, cognition, and society. (READ MORE...)

  • Mental Health
  • Neuroimaging
  • Personality Psychology
  • Social Psychology
  • Artificial Intelligence
  • Cognitive Science
  • Psychopharmacology
  • Contact us
  • Disclaimer
  • Privacy policy
  • Terms and conditions
  • Do not sell my personal information

(c) PsyPost Media Inc

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy

(c) PsyPost Media Inc