Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Study: Gamers ‘shielded’ from perceptual interference, enhancing their learning abilities

by Garrett Ray Harriman
June 18, 2015
in Cognitive Science
Photo credit: Kelly Hunter (Creative Commons)

Photo credit: Kelly Hunter (Creative Commons)

Share on TwitterShare on Facebook

Research surrounding video games is often controversial, but a recent study shows the positive role gamers’ perceptual strengths have on their learning ability.

Researchers from Brown University’s Laboratory for Cognitive and Perceptual Learning have published findings in PLOS ONE suggesting people who play video games on a regular basis are not only better and faster perceptual (visual) learners than non-frequent gamers, but are more resistant to perceptual interference, which may lead to more stable, long-term learning.

These findings are in good company. Video games have been the focus of much popular and psychological interest in recent years. Repeated studies have shown that “gamers” possess perceptual and attentional skills superior to non-gamers. For instance, gamers more easily differentiate between multiple distracting stimuli and expand their field of attention with greater ease.

Authors Berard, Cain, Watanabe, and Sasaki’s new study plants another flag on the face of video game research. Specifically, they asked if gamers’ heightened attentional abilities also “shield” them from perceptual interference and distractions, and if this shielding, in turn, enhances their long-term perceptual learning.

They recruited 9 gamers (those playing 5 hours or more/week) and 9 non-gamers (those playing less than 1 hour/week) and put them through two sessions of Task Discrimination Tasks (TDT). These exercises require participants to correctly identify the orientation of a sequence of targets on a screen. The target can appear in any of the screen’s four quadrants or its center, and the test introduces “interference” in the form of different backgrounds of vertical or horizontal lines. The speed and accuracy of responses are then measured. To measure memory consolidation (learning), often a full 24 hours passes between TDTs.

Past TDT research has demonstrated that different types of interference produce different perceptual and learning results. Interrupting a current TDT task with a new interference background, for instance, makes target discrimination more difficult. Once trained on one kind of background (horizontal lines), it becomes harder to learn when a new interference (vertical lines) is introduced. Shortening the time between target and interference screens further disrupts learning and memory processes. Both kinds of interference simulate real-world impediments to learning and were integral to this study.

To test how gamers fared against interference, the researchers administered a specialized TDT over the course of two days. Each session was evenly divided between vertical and horizontal interference, essentially functioning as a major perceptual interruption. On top of this, the targets and interference screens switched quicker and quicker (180 milliseconds to 60 milliseconds). Gamer and non-gamer participants took identical tests with identical interference shifts both days.

Replicating previous studies, results showed that gamers more quickly and accurately identified targets than non-gamers as measured by the increased presentation speed of targets and interference. The researchers were further rewarded with data suggesting gamers are more resistant to interference changes than non-gamers. They could recall, with greater accuracy than non-gamers, the position of targets through interjecting interference a full day later.

All of this suggests that gamers, possibly due to their increased exposure and practice with rapid, competing stimuli, reap long-term learning consolidation benefits in the face of interruptive stimuli. The same mechanisms that help them interpret and discriminate a large amount of speedy material may also help their long-term memories consolidate information.

“It may be possible that the vast amount of visual training frequent gamers receive over the years could help contribute to honing consolidation mechanisms in the brain, especially for visually developed skills,” the researchers explained. “Essentially, this would mean that over the 24-hour period of time between the experimental sessions, more efficient consolidation mechanisms could have been operating in the frequent gamers compared to the non-gamers, resulting in better overall learning.”

The authors of the study believe this vein of research could lead to a new model of visual learning, one “offering insight into how frequent gaming affects not only how we deal with presented information, but also how we retain this information, as well.”

RELATED

New psychology research reveals why people stay in situationships
Cognitive Science

Blue light exposure alters cortical excitability in young adults, but adolescents respond differently

December 7, 2025
Fluoride exposure in early childhood does not harm intelligence, Australian study finds
Cognitive Science

Large-scale U.S. study links water fluoridation to slightly improved cognitive development

December 6, 2025
Study finds age-dependent cognitive benefits from probiotic consumption
Cognitive Science

Study finds age-dependent cognitive benefits from probiotic consumption

December 5, 2025
How common is anal sex? Scientific facts about prevalence, pain, pleasure, and more
Cognitive Science

Neuroscientists find evidence that brain plasticity peaks at the end of the day

December 5, 2025
Noninvasive brain stimulation increases idea generation and originality
Cognitive Science

Noninvasive brain stimulation increases idea generation and originality

December 4, 2025
Study suggests that prefrontal cortex damage can have a paradoxical effect on rationality
Cognitive Science

Distinct neural pathways allow the prefrontal cortex to fine-tune visual processing

December 3, 2025
Longer gaming sessions are associated with improved cognitive functions and motor control
Cognitive Science

Biofeedback training helps esports players react significantly faster

December 3, 2025
Introversion, texting habits, and self-confidence: Understanding the connections
Cognitive Science

Higher social media engagement linked to reduced performance on cognitive assessments

December 2, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Scientists link inflammation to neural vulnerability in psychotic depression

Saffron supplements might help with erectile dysfunction, study suggests

New research differentiates cognitive disengagement syndrome from ADHD in youth

Laughing gas may offer rapid relief for treatment-resistant depression

Synesthesia is several times more frequent in musicians than in nonmusicians

Blue light exposure alters cortical excitability in young adults, but adolescents respond differently

Common left-right political scale masks anti-establishment views at the center

New research suggests deep psychological schemas fuel problematic porn use

RSS Psychology of Selling

  • Unlocking the neural pathways of influence
  • How virtual backgrounds influence livestream sales
  • Brain wiring predicts preference for emotional versus logical persuasion
  • What science reveals about the Black Friday shopping frenzy
  • Research reveals a hidden trade-off in employee-first leadership
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy