Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Study of jazz pianists finds ‘happy’ and ‘sad’ music evoke different neural patterns

by University of California at San Francisco
January 4, 2016
in Cognitive Science
Photo credit: Alberto Cabello

Photo credit: Alberto Cabello

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

The workings of neural circuits associated with creativity are significantly altered when artists are actively attempting to express emotions, according to a new brain-scanning study of jazz pianists.

Over the past decade, a collection of neuroimaging studies has begun to identify components of a neural circuit that operates across various domains of creativity. But the new research suggests that creativity cannot be fully explained in terms of the activation or deactivation of a fixed network of brain regions. Rather, the researchers said, when creative acts engage brain areas involved in emotional expression, activity in these regions strongly influences which parts of the brain’s creativity network are activated, and to what extent.

“The bottom line is that emotion matters,” said senior author Charles Limb, MD. “It can’t just be a binary situation in which your brain is one way when you’re being creative and another way when you’re not. Instead, there are greater and lesser degrees of creative states, and different versions. And emotion plays a crucially important role in these differences.”

Most of the new research, which appears in the January 4, 2016 issue of Scientific Reports, was conducted in Limb’s laboratory at Johns Hopkins School of Medicine before his move to UC San Francisco in 2015. In his surgical practice, Limb, now the Francis A. Sooy Professor of Otolaryngology at UCSF and an accomplished jazz saxophonist, inserts cochlear implants to restore hearing.

Previous research by Limb and others using functional magnetic resonance imaging (fMRI) to study musical improvisation, freestyle rapping, and the rendering of caricatures–creative acts that unfold in real time and are therefore more amenable to laboratory studies than, say, painting–deactivate a brain region known as the dorsolateral prefrontal cortex (DLPFC), which is involved in planning and monitoring behavior. This DLPFC deactivation has been taken to be a neural signature of the “flow state” artists may enter to free up creative impulses.

But in the new study, led by first author Malinda McPherson, the researchers found that DLPFC deactivation was significantly greater when the jazz musicians, who played a small keyboard while in the fMRI scanner, improvised melodies intended to convey the emotion expressed in a “positive” image (a photograph of a woman smiling) than when they aimed to capture the emotions in a “negative” image (a photograph of the same woman in a mildly distressed state).

On the other hand, improvisations targeted at expressing the emotion in the negative image were associated with greater activation of the brain’s reward regions, which reinforce behaviors that lead to pleasurable outcomes, and a greater connectivity of these regions to the DLPFC.

“There’s more deactivation of the DLPFC during happy improvisations, perhaps indicating that people are getting into more of a ‘groove’ or ‘zone,’ but during sad improvisations there’s more recruitment of areas of the brain related to reward,” said McPherson, a classical violist and first-year graduate student in the Harvard-MIT Program in Speech and Hearing Bioscience and Technology. “This indicates there may be different mechanisms for why it’s pleasurable to create happy versus sad music.”

Because the images themselves might induce an emotional response in the musicians, in addition to the brain scans made while the musicians improvised, each scanning session also included a time period in which the musicians passively viewed the images. For each musician, any brain activity data generated during these passive viewing periods, including emotional responses, were subtracted from that elicited during their musical performances. This allowed the researchers to determine which components of brain activity in emotional regions were strongly associated with creating the improvisations.

Moreover, Limb said, the research team avoided biasing the musicians’ performances with words like “sad” or “happy” when instructing the musicians before the experiments.

“The notion that we can study complex creativity in artists and musicians from a neuroscientific perspective is an audacious one, but it’s one that we’re increasingly comfortable with,” Limb said. “Not that we’re going to answer all the questions, but that we have the right to ask them and to design experiments that try to shed some light on this fascinating human process.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

These common sounds can impair your learning, according to new psychology research
Cognitive Science

These common sounds can impair your learning, according to new psychology research

July 4, 2025

Your brain’s ancient defense system might be sabotaging your test scores. New research suggests our "behavioral immune system," which makes us subconsciously alert to signs of illness, can be triggered by coughs and sniffles.

Read moreDetails
From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails
New psychology study sheds light on mysterious “feelings of presence” during isolation
Cognitive Science

Vagus nerve signals influence food intake more in higher socio-economic groups

July 1, 2025

Researchers have found that internal physiological cues—like signals from the vagus nerve—play a stronger role in guiding eating behavior among wealthier individuals, offering new insight into why socio-economic status is linked to differences in diet and health.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
Memory

Researchers identify neural mechanism behind memory prioritization

June 30, 2025

A new brain imaging study shows that when people try to remember multiple things, their brains give more precise attention to the most important item. The frontal cortex helps allocate memory resources, boosting accuracy for high-priority information.

Read moreDetails
Scientists show how you’re unknowingly sealing yourself in an information bubble
Cognitive Science

Scientists show how you’re unknowingly sealing yourself in an information bubble

June 29, 2025

Scientists have found that belief polarization doesn’t always come from misinformation or social media bubbles. Instead, it often begins with a simple search. Our choice of words—and the algorithm’s response—can subtly seal us inside our own informational comfort zones.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

How to protect your mental health from a passive-aggressive narcissist

Dark personality traits linked to generative AI use among art students

Scientists are uncovering more and more unsettling facts about our politics

People with depression face significantly greater social and health-related challenges

Stress disrupts gut and brain barriers by reducing key microbial metabolites, study finds

New research reveals hidden biases in AI’s moral advice

7 subtle signs you are being love bombed—and how to slow things down before you get hurt

A simple breathing exercise enhances emotional control, new research suggests

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy