Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Psychopharmacology Cannabis

Study provides new insights into the neurobiological mechanisms underlying cannabis tolerance

by Eric W. Dolan
April 8, 2020
in Cannabis
(Photo credit: psdesign1)

(Photo credit: psdesign1)

Share on TwitterShare on Facebook

New research has found that cannabis tolerance is linked to neurometabolic alterations in the brain’s reward circuitry. The findings, published in the journal Addiction Biology, help explain why the effects of cannabis are less prominent in frequent cannabis users.

“Cannabis is the most commonly used illicit drug in the world, with 4% of the global population reportedly using the substance. However due to a changing legal landscape, and rising interest in therapeutic utility, there is an increasing trend in (long-term) use,” said Natasha L. Mason (@NL_Mason), a PhD candidate at Maastricht University and the corresponding author of the new study.

“Importantly, a growing body of evidence suggests that the acute effects of cannabis are less prominent in regular cannabis users, suggesting development of tolerance to the impairing, as well as the rewarding, effects of the drug. Although this development of tolerance is quite well established, the neurobiological mechanisms underlying it are not.”

“These neurobiological mechanisms are important to elucidate, both in the context of therapeutic use of cannabis-based medications (e.g. deciding on dose in long-term treatment), as well as in the context of public health and safety of cannabis use when performing day-to-day operations (e.g. developing traffic laws),” Mason said.

In the double‐blind study, 12 occasional and 12 frequent cannabis users consumed the drug or a placebo before undergoing brain imaging scans. The participants also completed a measure of their reaction times and attentional lapses, along with an assessment of their subjective high.

The researchers observed significant differences between the occasional users, who consumed cannabis 1 time a month to 3 times a week, and the frequent users, who consumed the drug at least 4 times a week. In particular, cannabis resulted in alterations in the brain’s reward circuitry, including decreases in functional connectivity, in occasional users. But these changes were absent in chronic users.

“In the occasional users, we found that cannabis altered reward system circuitry in the brain, which was associated with our behavioral measures (increased feelings of high and decreased sustained attention). Such changes were absent in the chronic cannabis users, who did not show any brain changes or any cognitive impairment,” Mason told PsyPost.

“The finding that cannabis altered reward circuitry and distorted behavior in occasional users, but not chronic users, suggests the lack of behavioral response to cannabis intoxication in chronic users arrives from a blunted responsiveness in their reward circuitry, thus identifying a neurobiological mechanism of tolerance.”

“Cannabis tolerance is not a final, permanent state that is achieved after chronic cannabis use, but rather a temporary state of decreased sensitivity to cannabis exposure that dynamically fluctuates across the spectrum of a full-to-no experience of cannabis effects, depending on the pattern of cannabis use,” Mason added.

“However, little is known about cannabis use patterns and motives underlying such patterns among medical and recreational users, and the impact of changes in cannabis use patterns have not been studied in the lab. Thus knowledge on frequency, dose and duration of cannabis use that is needed to achieve, maintain or lessen tolerance however is very limited, but will be of importance in the context of cannabis therapeutics and in legal settings when evaluating the impact of cannabis exposure on human function.”

The study, “Reduced responsiveness of the reward system is associated with tolerance to cannabis impairment in chronic users“, was authored by Natasha L. Mason, Eef L. Theunissen, Nadia R.P.W. Hutten, Desmond H.Y. Tse, Stefan W. Toennes, Jacobus F.A. Jansen, Peter Stiers, and Johannes G. Ramaekers.

RELATED

From tango to StarCraft: Creative activities linked to slower brain aging, according to new neuroscience research
Addiction

Cannabis use associated with a reduction in alcohol intake

November 11, 2025
In neuroscience breakthrough, scientists identify key component of how exercise triggers neurogenesis
Cannabis

New study finds CBD worsens cannabis effects in schizophrenia

November 1, 2025
The neuroscience of placebo analgesia: Brain pathway explains how expectations reduce pain
Cannabis

Omega-3 diet offsets some prenatal cannabis effects in male but not female offspring

October 30, 2025
Cannabis affects cognitive and psychomotor performance differently based on usage patterns
Cannabis

New research show how tobacco may worsen brain-related outcomes in cannabis users

October 24, 2025
Teens who use cannabis are 11 times more likely to develop a psychotic disorder
Cannabis

Cannabis use in adolescents is associated with more frequent psychotic-like experiences

October 19, 2025
Psychedelic experiences linked to reduced cannabis use and greater psychological flexibility
Addiction

Psychedelic experiences linked to reduced cannabis use and greater psychological flexibility

October 17, 2025
Cannabidiol may ease Alzheimer’s-related brain inflammation and improve cognition
Alzheimer's Disease

Cannabidiol may ease Alzheimer’s-related brain inflammation and improve cognition

October 14, 2025
Cannabis compound THC disrupts communication between brain networks
Cannabis

Cannabis compound THC disrupts communication between brain networks

October 13, 2025

PsyPost Merch

STAY CONNECTED

LATEST

A common amino acid reduces brain plaques in animal models of Alzheimer’s disease

The booming market for mushroom edibles has a hidden and potentially toxic problem

Your brain’s reaction to the unknown could predict how you vote

Is sleeping too much actually bad for your health?

From cold shock to collapse: the real risks of the cold plunge craze

High-sugar diets may mimic Alzheimer’s pathology more closely than high-fat diets

Repurposed cancer drugs show promise as combination therapy for Alzheimer’s disease

Playing pickleball at least three times a week linked to better mental health

RSS Psychology of Selling

  • Brain wiring predicts preference for emotional versus logical persuasion
  • What science reveals about the Black Friday shopping frenzy
  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy