Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Neuroimaging

The neuroscience of greed: A glimpse into our brain’s reaction to fear and desire

by Eric W. Dolan
February 27, 2024
in Neuroimaging, Social Psychology
(Photo credit: OpenAI's DALL·E)

(Photo credit: OpenAI's DALL·E)

Share on TwitterShare on Facebook

In a recent study published in Behavioral and Brain Functions, scientists have delved into the interplay between fear and greed, revealing intriguing insights into our brain’s workings. By examining how individuals’ brains react to negative emotional faces, the research sheds light on the neurological underpinnings of dispositional greed, offering a novel perspective on the age-old adage of fear and greed driving human behavior.

The scientific investigation was motivated by the desire to bridge a gap in our understanding of the neurobiological roots of greed, especially outside the financial realm. While fear often leads to defensive actions, greed pushes individuals towards risk-taking and aggressive behaviors.

This divergence, particularly evident in financial decision-making, suggests a complex relationship between our emotional responses and behavioral outcomes. The researchers aimed to explore this relationship further by focusing on how the brain’s reaction to negative emotions relates to greed.

“Greed is an extremely critical theme in the history of human development,” said study author Qiang Wang, a professor at Tianjin Normal University in China. “It has attracted the attention from many disciplines, including philosophy, religion, economics, and psychology.”

“With the development of brain imaging techniques such as fMRI, EEG, and MEG, we have an opportunity to comprehensively understand its cognitive and neural mechanisms. However, the studies using these neuroscience techniques are relatively few, and my personal interest on this topic further drives me to conduct experiments focusing on greed.”

For their study, the researchers recruited 452 college students, with the participants’ ages ranging between 18 and 26 years. These individuals were divided into two cohorts: one that underwent a task-based fMRI scan while engaging in a face-matching task (Cohort 1) and another that participated only in resting-state fMRI scanning (Cohort 2).

Prior to the scanning sessions, all participants were assessed for their level of greed using the 7-item Dispositional Greed Scale (DGS), a validated tool designed to measure greed as a personality trait. This scale helped the researchers quantify the tendency to act greedy, facilitating a correlational analysis with neural activity.

The face-matching task, employed with Cohort 1, was chosen for its efficiency and low-cost in terms of time for investigating basic emotional responses like fear and anger. Participants in this cohort were shown a trio of faces and asked to select one of two faces at the bottom of the screen that matched the target face displayed at the top.

This task included blocks of fearful, angry, and neutral faces, designed to elicit brain reactivity to negative emotional faces without imposing domain-specific biases. The task’s structure — interleaving blocks of face matching with blocks of a shape-matching sensorimotor control task — allowed for a clear comparison between emotional and non-emotional processing in the brain.

Contrary to what might be expected based on previous research, the researchers did not find a direct association between the amygdala’s reactivity to negative emotional faces and dispositional greed. The amygdala is known for its role in processing emotional stimuli, particularly fear and anger.

A pivotal discovery of the study was the significant relationship between the ventromedial prefrontal cortex (vmPFC) reactivity to negative emotional faces and dispositional greed. Specifically, individuals with higher levels of dispositional greed exhibited altered reactivity in the vmPFC when faced with negative stimuli, suggesting a unique neural basis of greed that differs from the traditional understanding of fear-driven behaviors.

Further illuminating the study’s findings were the observations regarding functional connectivity between the vmPFC and other brain regions. The research found that individuals with higher greed levels demonstrated weaker functional connectivity between the vmPFC and regions associated with top-down control and visual processing when engaging with negative emotional stimuli. This pattern indicates that greed may involve a diminished regulation of negative emotions, as well as altered processing of emotional and social cues, pointing to a broader network of brain regions involved in the manifestation of greed.

“Greedy people are not as happy as we imagine,” Wang told PsyPost. “The possible mechanism might depend on the neural response to negative emotion faces, especially in the ventromedial prefrontal cortex but not the amygdala.”

These findings lay the groundwork for future research aimed at unraveling the intricate neural networks that govern greed and its effects on human behavior. By pinpointing the vmPFC as a key region associated with greed, the study opens new avenues for understanding the brain mechanisms linked to selfish behaviors.

While the study offers groundbreaking insights, it also has limitations, such as its focus on a specific demographic (college students) and the use of a singular task for emotional elicitation. These factors highlight the need for further research involving diverse populations and varied methodologies to fully understand the neural dynamics of greed.

“I will continue to unveil the neural substrates underlying greed, especially focusing on the emotion, reward, and top-down control networks as well as possible non-invasive neural stimulation to modulate individual greed level on money and materials,” Wang said.

The study, “Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait,” was authored by Kun Deng, Weipeng Jin, Keying Jiang, Zixi Li, Hohjin Im, Shuning Chen, Hanxiao Du, Shunping Guan, Wei Ge, Chuqiao Wei, Bin Zhang, Pinchun Wang, Guang Zhao, Chunhui Chen, Liqing Liu, and Qiang Wang.

RELATED

Kids start associating accents with intelligence surprisingly early
Racism and Discrimination

How social status psychologically shapes racial bias in children

January 15, 2026
Avoidant attachment to parents linked to choosing a childfree life, study finds
Parenting

Childfree people are viewed as competent but lacking in warmth compared to parents

January 15, 2026
Long-COVID recovery: The promising combo of breath exercises and creatine supplementation
COVID-19

COVID-19 infection may alter brain microstructure even in people who fully recover

January 15, 2026
Faith and gray matter: New study finds no relationship between brain structure and religiosity
Mental Health

Excessive smartphone users show heightened brain reactivity to social exclusion

January 15, 2026
Fear predicts authoritarian attitudes across cultures, with conservatives most affected
Authoritarianism

Study identifies two distinct types of populist voters driving support for strongman leaders

January 14, 2026
Dark personalities in politicians may intensify partisan hatred—particularly among their biggest fans
Donald Trump

Researchers identify personality traits linked to Trump’s “cult-like” followership

January 14, 2026
Brain scan MRI images showing detailed views of brain structures for neurological and psychological research.
Cognitive Science

Scientists identify five distinct phases of brain structure across the human lifespan

January 13, 2026
Insecure attachment is linked to Machiavellian personality traits
Attachment Styles

Insecure attachment is linked to Machiavellian personality traits

January 12, 2026

PsyPost Merch

STAY CONNECTED

LATEST

Boys and girls tend to use different strategies to solve math problems, new research shows

Religious attendance linked to better mental health in older adults

How social status psychologically shapes racial bias in children

Childfree people are viewed as competent but lacking in warmth compared to parents

MIND diet may protect the brain by slowing biological aging

High-dose birth control pills linked to elevated fear in safe contexts

COVID-19 infection may alter brain microstructure even in people who fully recover

Excessive smartphone users show heightened brain reactivity to social exclusion

RSS Psychology of Selling

  • Researchers track how online shopping is related to stress
  • New study reveals why some powerful leaders admit mistakes while others double down
  • Study reveals the cycle of guilt and sadness that follows a FOMO impulse buy
  • Why good looks aren’t enough for virtual influencers
  • Eye-tracking data shows how nostalgic stories unlock brand memory
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy