Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Muscle contractions release chemical signals that promote brain network development

by Eric W. Dolan
June 2, 2023
in Cognitive Science, Mental Health
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Chemical signals from contracting muscles can influence the growth of brain networks, according to new research published in Neuroscience. The study highlights the importance of physical activity to mental health, and the findings could also help contribute to the development of more effective treatments for cognitive disorders such as Alzheimer’s disease.

Previous studies had shown that exercise has significant benefits for cognitive health, even when initiated at late stages in life. Exercise has been associated with long-term changes in the hippocampus, a brain region crucial for learning and memory, including increased neurogenesis, synaptogenesis, and enlarged volume.

However, the specific mechanisms through which exercise produces these changes in the hippocampus were not well understood. By uncovering these mechanisms, the authors behind the new study aim to develop exercise-based treatments for cognitive pathologies that affect the hippocampus, such as Alzheimer’s disease, stress, depression, anxiety, and normal aging.

“I was initially drawn to this topic due to my fascination with the intricacies of the human brain and mind,” explained study author Ki Yun Lee, a PhD candidate in the Department of Mechanical Science and Engineering at University of Illinois at Urbana-Champaign.

“The fact that many principles I regularly encounter, such as those in machine learning and deep learning, originate from the remarkable workings of the brain further piqued my interest. With substantial portions of the brain still remaining unexplored, I was eager to delve into its complexities and gain insights by reverse engineering its processes.”

“Specifically, I wanted to understand the brain’s interactive nature with the environment during periods of activity. Consequently, studying the effects of exercise on the brain became a captivating starting point in my journey to unravel the mysteries of the brain and mind.”

To investigate the interactions between contracting muscle cells and hippocampal cells, the researchers used an in vitro approach. They isolated muscle cells from mice and cultured them in the lab. When these muscle cells matured, they spontaneously started contracting, releasing compounds into the culture medium. The researchers collected the conditioned media containing these compounds and applied it to primary cultures of hippocampal cells, which included neurons and astrocytes.

Astrocytes are a type of glial cell, which are non-neuronal cells that provide support and functionality to neurons in the brain and spinal cord. Astrocytes are the most abundant type of glial cell in the central nervous system.

The study aimed to determine whether the conditioned media from contracting muscle cells influenced the function and maturation of hippocampal neuronal networks. Additionally, the researchers wanted to investigate the role of astrocytes in transmitting the signals from muscle contractions to the activity of hippocampal neuronal networks.

The researchers employed various techniques, such as immunofluorescent and calcium imaging to assess cell growth and multi-electrode arrays to record neuronal electrical activity, to examine the effects of the chemical signals on the hippocampal cells.

The findings of the study suggest that muscle contractions release factors that can directly influence hippocampal cells involved in cognition. Lee and his colleagues observed that exposure to these chemical signals resulted in the more rapid maturation of the hippocampal neuronal network.

Specifically, the hippocampal neurons exposed to these chemical signals showed increased synapse development and synchronous neuronal activity, indicating a more mature and organized network. The proliferation of astrocytes, a type of glial cell, increased 4.4-fold and the proliferation of neurons increased 1.4-fold.

“The study’s findings, when considered alongside existing research, provide compelling evidence that exercise benefits not only physical health but also cognitive health,” Lee told PsyPost. “The results indicate that chemical signals released by contracting muscles play a significant role in promoting the development of hippocampal neurons, which are essential for learning, memory, and the formation of neural networks.”

“Additionally, the study highlights the critical involvement of astrocytes, the supportive cells of neurons, in mediating the impact of exercise on neuronal activity. This suggests that maintaining a balance between neurons and astrocytes is crucial for optimal brain function.”

“These findings emphasize the importance of adopting a holistic approach to brain health, considering not only the well-being of neurons but also the supportive role of astrocytes,” Lee explained. “By incorporating lifestyle factors such as balanced diet and exercise, individuals can potentially optimize their brain function and overall well-being.”

To understand the role of astrocytes in the increased spike rate observed in response to the chemical signals, the researchers conducted an experiment using primary hippocampal cell cultures with reduced astrocyte populations. They found that astrocytes played a critical role in mediating the effects of exercise by regulating neuronal activity and preventing excessive excitability.

“I was particularly surprised by the significant role of astrocytes as regulators of neuronal activity, which had previously been overlooked. In our in vitro cell cultures, when we removed astrocytes, we observed the neurons became hyperexcitable,” Lee said.

“However, this hyperexcitability was effectively mediated when we reintroduced either astrocytes themselves or the chemical factors released by astrocytes. This finding has opened up exciting new possibilities for further exploration, understanding, and potential treatment of neurological disorders, such as epilepsy, where hyperexcitability of neurons is a primary factor.”

In future studies, the researchers plan to explore the communication between muscle cells and hippocampal cells in more detail. They also want to identify the specific substances released by contracting muscles that have an impact on the growth and maturation of hippocampal neurons. This information could be used to develop treatments that replicate the cognitive benefits of exercise even without physical activity.

“While this in vitro study has the advantage of isolating and investigating specific components of the body, such as muscles, it is important to acknowledge a major distinction between the in vitro model and the whole organism,” Lee told PsyPost. “In the brain, astrocytes form the blood-brain barrier, which acts as a selective filter for substances from the blood that can reach neurons. However, in the in vitro model, there is no blood-brain barrier, allowing muscle factors to directly influence neurons.

“Despite this disparity, our in vitro model demonstrated that astrocytes responded more significantly to muscle signals compared to neurons, indicating a role consistent with that of the blood-brain barrier. Furthermore, the model successfully reproduced key phenomena observed in the whole organism, including neurogenesis, synaptogenesis, and astrogliogenesis (- genesis means formation). These findings suggest that both the in vitro model and the whole organism likely operate through a similar underlying mechanism.”

Understanding how muscle contractions affect the growth and regulation of hippocampal neurons could lead to better exercise-based treatments for cognitive disorders like Alzheimer’s disease.

“I would like to mention that our research into the effects of chemical cues from contracting muscle cells on neurons and astrocytes has yielded valuable insights into the intricate workings of the brain,” Lee said. “As we move forward, we are expanding our study to incorporate an engineering perspective. While I am unable to share specific details at this time, one area of investigation involves exploring the mechanical cues that impact neurons during exercise, and our preliminary results appear to be supportive.”

“Additionally, we are conducting a promising study to analyze the electrical activity of neurons during exercise. The patterns of neuronal excitement we observe can bear resemblance to dynamic systems found in nature, such as volcanoes and earthquakes.”

The study, “Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development“, was authored by Ki Yun Lee, Justin S. Rhodes, and M. Taher A. Saif.

TweetSendScanShareSendPin19ShareShareShareShareShare

RELATED

Frequent egg consumption linked to lower risk of Alzheimer’s dementia, study finds
Alzheimer's Disease

Frequent egg consumption linked to lower risk of Alzheimer’s dementia, study finds

July 12, 2025

Older adults who ate more than one egg per week had a lower risk of developing Alzheimer’s dementia and showed fewer Alzheimer’s-related brain changes. About 39% of this association was explained by higher dietary choline intake from eggs.

Read moreDetails
Liberals and conservatives live differently — but people think the divide is even bigger than it is
Depression

Low sexual activity, body shape, and mood may combine in ways that shorten lives, new study suggests

July 12, 2025

A large American survey finds that adults who have sex fewer than a dozen times a year die sooner when extra abdominal fat coincides with depression, hinting that mood and body shape can combine in a dangerous feedback loop.

Read moreDetails
Liberals and conservatives live differently — but people think the divide is even bigger than it is
Anxiety

Highly irritable teens are more likely to bully others, but anxiety mitigates this tendency

July 12, 2025

Social anxiety weakens the link between irritability and bullying in adolescents—irritable teens are less likely to bully others if they also have social anxiety. This moderating effect was not seen with generalized anxiety or other forms of aggression.

Read moreDetails
A surprising body part might provide key insights into schizophrenia risk
Addiction

Neuroscientists shed new light on how heroin disrupts prefrontal brain function

July 11, 2025

After heroin exposure and abstinence, mice showed reduced prefrontal brain activity during social interaction but heightened responses to drug-related cues, suggesting heroin disrupts normal brain function in ways that may contribute to social withdrawal and relapse risk.

Read moreDetails
A surprising body part might provide key insights into schizophrenia risk
Alzheimer's Disease

New research identifies four distinct health pathways linked to Alzheimer’s disease

July 11, 2025

Researchers identified four common disease pathways—centered on mental health, brain disorders, cognitive decline, and vascular issues—that often precede Alzheimer’s, showing that the sequence of conditions may better predict risk than individual diagnoses alone.

Read moreDetails
A surprising body part might provide key insights into schizophrenia risk
Mental Health

A surprising body part might provide key insights into schizophrenia risk

July 11, 2025

A new study published in Nature Mental Health has found that people with a higher genetic risk for schizophrenia tend to have thinner retinas, even if they do not have the disorder. Using data from nearly 35,000 healthy individuals, the researchers showed that this association was especially pronounced in areas...

Read moreDetails
A common vegetable may counteract brain changes linked to obesity
Mental Health

A common vegetable may counteract brain changes linked to obesity

July 11, 2025

Could a humble vegetable protect the brain from the effects of early-life overfeeding? A new rat study finds that okra improves insulin sensitivity and reduces inflammation in key brain areas linked to appetite and obesity.

Read moreDetails
Dementia: Your lifetime risk may be far greater than previously thought
Dementia

Dementia: Your lifetime risk may be far greater than previously thought

July 10, 2025

A recent study shows a staggering 42% of Americans may develop dementia, with women and Black adults at even higher risk. Researchers say what's missing from prevention efforts is a focus on the pervasive role of chronic stress.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Frequent egg consumption linked to lower risk of Alzheimer’s dementia, study finds

Psychopathic personality and weak impulse control pair up to predict teen property crime

Low sexual activity, body shape, and mood may combine in ways that shorten lives, new study suggests

Highly irritable teens are more likely to bully others, but anxiety mitigates this tendency

Neuroscientists identify brain pathway that prioritizes safety over other needs

Liberals and conservatives live differently — but people think the divide is even bigger than it is

Neuroscientists shed new light on how heroin disrupts prefrontal brain function

New research identifies four distinct health pathways linked to Alzheimer’s disease

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy