Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Dopamine isn’t just a “feel good” chemical: New study reveals its role in reversal learning

by Eric W. Dolan
February 17, 2024
in Cognitive Science, Neuroimaging
Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Have you ever wondered how your brain manages to switch gears when life suddenly changes the rules of the game? Researchers have now shed light on this very process, revealing that a key brain chemical plays a pivotal role in helping us adapt to new situations. By combining brain imaging techniques with a specially designed task, they found that dopamine, a brain chemical often associated with pleasure and reward, is also crucial in helping us learn from our mistakes and adjust our decisions accordingly.

The findings have been published in the scientific journal Nature Communications.

Dopamine is a name that often pops up in conversations about happiness, motivation, and addiction. This brain chemical is a sort of messenger that transmits signals within the brain, affecting our mood, sleep, learning, concentration, and even our movement. But its role is far more complex than just making us feel good.

Dopamine is intricately involved in how we make decisions, especially in situations that require us to learn, unlearn, and relearn based on new information. The researchers embarked on this study to dive deeper into the mysteries of dopamine, motivated by the desire to understand how it influences our ability to adapt our decisions when circumstances change.

“I have a general interest in understanding what dopamine does in the human brain and what sorts of cognitive processes it supports,” said lead author Filip Grill, a postdoctoral researcher at the Donders Centre for Cognitive Neuroimaging. “Dopamine is a mysterious molecule since it seems to be related to several behavioral domains including processing of motivational, cognitive, and motor functions.”

“The vast majority of research on how dopamine relates to behavior is done in rodents and non-human primates, since it is difficult to measure dopamine and especially dopamine-release in humans while we are actively engaged in some behavior. This kind of translation from animal to human is also something I am very interested in.

The study brought together 26 volunteers from the community, ensuring none had a history of neurological or psychiatric illness, drug or alcohol dependence, or any condition that would interfere with the brain imaging used in the research.

Participants engaged in a computer-based task while undergoing brain scans using two advanced techniques: positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). This task was a reversal learning paradigm, a method used to explore how individuals adjust their decisions based on changing rewards.

The task was a game of guessing whether a hidden number was above or below five, with correct guesses rewarded and incorrect ones not. Unbeknownst to the participants, the rules for rewards changed during the task, creating periods of stability and volatility that mimicked real-life situations where the ‘right’ choice can suddenly become ‘wrong.’

The PET scans were used to detect changes in dopamine levels in the brain by measuring the binding of a radioactive compound that competes with dopamine for the same brain receptors. The fMRI scans, on the other hand, provided insight into brain activity by detecting changes in blood flow, offering a glimpse into which parts of the brain were working harder during different phases of the task.

The researchers observed significant findings through the PET scans, particularly in the striatum, a brain region known for its role in reward processing. They found that dopamine release increased in this area when participants faced the switch from stable to volatile rules, suggesting dopamine’s key role in signaling the need for a strategy change. This dopamine release correlated with the participants’ ability to adapt their decisions based on new information, with higher dopamine levels linked to quicker adjustment and better performance on the task.

“I think the general view of dopamine is that it is a kind of reward molecule but here we show that dopamine is also released when we learn from errors,” Grill told PsyPost. “Individuals that were very sensitive to their errors released more dopamine. However, these individuals were not necessarily best at the task. Instead, individuals that released a medium amount of dopamine had best performance.”

The fMRI data complemented these findings by showing increased brain activity in areas associated with attention and decision-making, especially after the rule change. This activity pattern suggests that the brain engages a network of regions to process unexpected outcomes and to adapt decisions accordingly.

“Seeing a rather strong brain–behavior correlation is quite surprising,” Grill remarked. “I hope I will get surprised again in the future.”

While the study’s results are compelling, they come with their share of limitations. For instance, the design of the brain imaging study meant that researchers could not compare their findings against a baseline of brain activity without the task, potentially overlooking how individual differences in dopamine levels might influence adaptability. Furthermore, the complexity of human behavior and brain chemistry means that dopamine is not the only player in this adaptive process. Future research could benefit from exploring how other neurotransmitters interact with dopamine and contribute to our ability to learn and adjust to new information.

The journey to fully understand the human brain’s adaptability is far from over. Future studies could explore how different levels of dopamine affect decision-making in various contexts, perhaps by incorporating tasks that simulate more complex real-life scenarios or by using pharmacological methods to alter dopamine levels directly. Another promising direction is to examine the role of dopamine in populations with neurological conditions that affect decision-making and learning, providing insights that could inform new therapeutic approaches.

“The study was conducted with healthy young adults,” Grill noted. “The long-term goal is to adapt the paradigm to investigate dopamine release during different behaviors in neurological and psychiatric disorders with abnormal dopamine signaling such as Parkinson’s disease and schizophrenia.”

The study, “Dopamine release in human associative striatum during reversal learning,” was authored by Filip Grill, Marc Guitart-Masip, Jarkko Johansson, Lars Stiernman, Jan Axelsson, Lars Nyberg, and Anna Rieckmann.

RELATED

Early brain changes predict chronic pain after whiplash injuries
Mental Health

Teen sleep habits may shape brain connectivity linked to behavior problems

August 14, 2025

A new study indicates that adolescents who get less sleep tend to show disrupted brain connectivity—and may be more likely to develop behavioral problems over time. The findings suggest that improving sleep could be one way to reduce mental health risks.

Read moreDetails
His psychosis was a mystery—until doctors learned about ChatGPT’s health advice
Mental Health

Genetic link found between suicide risk and brain structure in large-scale study

August 13, 2025

A large imaging-genetics study suggests that suicide attempt risk and brain structure share common genetic roots. Researchers found overlaps in genetic markers linked to suicide risk and brain volume, with differences emerging between adults and adolescents in affected brain regions.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
Addiction

Drug-using teens show distinct patterns of brain development tied to dopamine regulation

August 13, 2025

A new study suggests that slower development in dopamine-related brain regions may help explain why some teens are more likely to use substances or need stronger rewards to stay focused during adolescence, a period marked by heightened sensitivity to incentives.

Read moreDetails
Autopsies revealed mysterious blue-colored brains — now scientists know what caused it
Neuroimaging

Autopsies revealed mysterious blue-colored brains — now scientists know what caused it

August 12, 2025

Doctors performing autopsies on critically ill patients were stunned to see brains turning blue. A new forensic study suggests that methylene blue and other compounds used before death may be responsible for these vivid postmortem discolorations.

Read moreDetails
Neuroscientists identify a reversible biological mechanism behind drug-induced cognitive deficits
Cognitive Science

Dopamine’s role in learning may be broader than previously thought

August 11, 2025

New research reveals dopamine helps the brain juggle fast, flexible problem-solving with gradual habit formation. By boosting working memory use and enhancing trial-and-error learning, dopamine influences both how quickly we learn and how costly mental effort feels.

Read moreDetails
Exercise can reduce feelings of hopelessness among patients in suicide crisis, pilot study finds
Cognitive Science

Physically active individuals tend to have slightly better cognitive abilities on average

August 10, 2025

A new meta-analysis suggests that while physical activity generally has a small positive impact on cognition, outdoor moderate-to-vigorous exercise paired with cognitively challenging activities delivers the biggest gains across age groups, from preschoolers to older adults.

Read moreDetails
People with narcissistic tendencies report more ostracism and are more often excluded
Anxiety

Sleep may amplify negative memory bias in anxious youth

August 10, 2025

Researchers have found that children and young adolescents with higher anxiety tend to generalize negative memories more after sleep, raising questions about how nighttime memory processes could reinforce anxiety-related thought patterns during a sensitive developmental stage.

Read moreDetails
Moderate aerobic exercise enhances the brain’s “eighth sense”
Cognitive Science

Bright children from low-income homes lose cognitive edge in early secondary school

August 8, 2025

A new UK study finds that bright 5-year-olds from low-income families match their affluent peers academically through primary school, but between ages 11 and 14, they face steep declines in motivation, behavior, mental health, and exam performance.

Read moreDetails

STAY CONNECTED

LATEST

Lumberjack amputates ears and penis during psychotic episode linked to cannabis and kratom use

Children begin weighing confidence in others’ opinions by age 8, study suggests

New study links celebrity worship to narcissism, materialism, and perceived similarity

Long-term study finds widening gap in social isolation between sexual minority and heterosexual adults

How parents talk about uncertainty may shape children’s intellectual humility

Teen sleep habits may shape brain connectivity linked to behavior problems

Traditional beliefs can shift the link between beauty and women’s sexual openness, new research suggests

Parents’ attachment style linked to how deeply they connect with positive memories

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy