Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Depression

How antidepressants, ketamine and psychedelic drugs may make brains more flexible

by Barbara Jacquelyn Sahakian and Christelle Langley
February 10, 2024
in Depression, Ketamine, Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook

The first-line pharmacological treatment for major depressive disorder (MDD) are antidepressant drugs known as selective serotonin re-uptake inhibitors (SSRIs). But a significant proportion of people don’t respond to these drugs.

Given that major depression is a global mental health problem that is on the increase, it is important to find novel pharmacological treatments for those who do not respond to the current ones. But to do that, we need to understand exactly how the drugs work – which we currently don’t.

MDD is a debilitating and distressing mental health disorder, trapping sufferers in a rigid and negative state of mind. There’s even evidence suggesting that this lack of flexibility is associated with cognitive changes, including negative thoughts and biases, and problems with learning and memory.

In our new study, published in Molecular Psychiatry, we show that an SSRI called escitalopram may actually make brains more “plastic” – meaning more flexible and adaptive; more able to facilitate communication between neurons (brain cells). Brain plasticity is simply the ability of neural circuits to change through growth and reorganisation. Learning involves brain plasticity, including changes in neural circuits, and can help people to recover from depression.

One novel treatment option for depression, approved by the US Food and Drug Administration, is intranasal esketamine (an anaesthetic made from ketamine), although it has not as yet been approved for use by the NHS. The psychedelic drugs LSD and psilocybin are also being investigated for treatment resistant depression in research studies, but are not yet approved by regulatory bodies. When these studies are conducted, there is careful monitoring by a medical professional to ensure participant safety.

We know that both SSRIs and psychedelics target the same brain receptor (known as the 5HT-2A). By contrast, eskatamine, similar to ketamine, works on a different receptor (N-methyl-D-aspartate or NMDA) and affects the brain chemical glutamate.

So how do SSRIs and psychedelics work to reduce symptoms of depression? At present, we don’t have the full picture. But the 5HT-2A receptor is linked to the brain chemical serotonin, increasing levels of it in the brain. And a recent study has indeed shown that serotonin appears to be reduced in people with depression.

SSRIs, however, also affect the neurotransmitters GABA and glutamate. The latter has been linked to learning, cognition and memory – suggesting SSRI may actually help to restore cognitive function. Although the exact mechanisms of psychedelics are not yet fully understood, their antidepressant effects seem to work in a similar way to SSRIs given their effects on 5HT-2A receptors. However, there are also other reactions to psychedelics, such as hallucinations.

Measuring brain plasticity

All these drugs have therefore been suggested to affect brain plasticity. However, in humans, it can be difficult to estimate levels of brain plasticity. One common method that scientists have used is to measure a protein called the brain-derived neurotrophic factor (BDNF) in blood samples.

BDNF helps brain plasticity by increasing the number of synapses (locations where neurons can communicate with each other), as well as the branches and growth of developing neurons. Synapses are particularly important in brain functioning as they allow transmission of chemical and electrical signals from one neuron to another. Similarly, synapses also store brain chemicals for release.

There have been some studies showing that antidepressant drugs increase BDNF. However, better techniques are required to study plasticity in the human brain.

To develop better drugs, one approach is to find anti-depressant drugs with a faster mechanism of action. According to the NHS website, SSRIs usually need to be taken for two to four weeks before any benefit is felt.

We suspected that one reason for this delayed effect may be that brain plasticity needs to occur with SSRI treatment. As this process involves rewiring, such as the creation of synapses and circuits, it isn’t instant, but is thought to take approximately 14-21 days.

In our study, which was a collaboration between the University of Cambridge and the University of Copenhagen, we used a novel technique to measure plasticity in the human brain, following SSRI treatment, for the first time.

Thirty-two participants underwent positron emission tomography (PET) scanning to detect the amount of a protein called “synaptic vesicle glycoprotein 2A”, or SV2A, in the brain. We know that SV2A is a marker of the presence of synapses. An increased amount would suggest that more synapses are present and therefore that brain plasticity is higher.

Our results showed a rise in this protein as a result of taking escitalopram (an SSRI). We found that, in those taking escitalopram, increased SV2A was associated with increased duration on the drug. Our findings suggest that brain plasticity increases over three to five weeks in healthy humans following daily intake of escitalopram.

This is the first real evidence in humans that SSRIs really do boost neuroplasticity – seen in the brain – and that this is one of the reasons it can treat depression. Similar evidence from studies in the human brain are still required for the psychedelics.

It makes sense that if antidepressant treatment facilitates brain plasticity, this should make it easier for people taking these treatments to learn new things. And we know that the ability to adopt new strategies, and change them if they don’t work (supported by what researchers call cognitive flexibility), is key to recovering from depression.The Conversation

 

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Traumatic brain injury may steer Alzheimer’s pathology down a different path
Cognitive Science

New maps of brain activity challenge century-old anatomical boundaries

January 29, 2026
Scientists link popular convenience foods to a measurable loss of cognitive control
Mental Health

Menopause is linked to reduced gray matter and increased anxiety

January 28, 2026
The tendency to feel like a perpetual victim is strongly tied to vulnerable narcissism
Cognitive Science

Global brain efficiency fails to predict general intelligence in large study

January 27, 2026
The tendency to feel like a perpetual victim is strongly tied to vulnerable narcissism
Neuroimaging

Chia seeds may help the brain regulate appetite and inflammation

January 26, 2026
Brain circuits tied to depression’s “negativity effect” uncovered
Developmental Psychology

Common air pollutants associated with structural changes in the teenage brain

January 26, 2026
New psychology research finds romantic cues reduce self-control and increase risky behavior
Neuroimaging

Your brain being “in sync” with others may protect against trauma, new neuroscience research suggests

January 25, 2026
New psychology research finds romantic cues reduce self-control and increase risky behavior
Artificial Intelligence

Machine learning identifies brain patterns that predict antidepressant success

January 25, 2026
Dartmouth researchers create new template of the human brain
Addiction

Brain imaging provides insight into the biological roots of gambling addiction

January 22, 2026

STAY CONNECTED

LATEST

Cannabis beverages may help people drink less alcohol

New maps of brain activity challenge century-old anatomical boundaries

Diet quality of children improved after five months of gardening and nutrition sessions

Researchers identify the psychological mechanisms behind the therapeutic effects of exercise

Alzheimer’s patients show reduced neural integration during brain stimulation

Women’s libido drops significantly during a specific phase of the menstrual cycle

Narcissism shows surprisingly consistent patterns across 53 countries, study finds

How AI’s distorted body ideals could contribute to body dysmorphia

RSS Psychology of Selling

  • Surprising link found between greed and poor work results among salespeople
  • Intrinsic motivation drives sales performance better than financial rewards
  • New research links faking emotions to higher turnover in B2B sales
  • How defending your opinion changes your confidence
  • The science behind why accessibility drives revenue in the fashion sector
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy